Settle3D - A numerical generator for artificial porous media
نویسندگان
چکیده
Reservoir rocks, regardless of what kind (oil-, gasor water-bearing), are classified by their specific properties. Most rock properties, such as storage, permeability, electric conductivity, heat capacity and so on are determined by laboratory experiments and field tests under different external conditions. Besides temperature, pressure and chemical reactions, also the geometry of the pore space as well as porosity control the specific behaviour of a rock. In most experiments, heterogeneous deformation of the pore space, changes in porosity and inner surface or closing of micro-cracks or pore-throats, cannot be observed directly. To study the dynamic processes behind these changes, we developed the sedimentary tool ”Settle3D”. With this software it is possible to generate different clastic rocks in a discrete way, which means that each grain inside this rock can be handled separately. The resulting porous medium can be directly used as import structure for different mechanical, hydraulic and thermal simulations. So the structural information of rocks can be linked to the petrophysical behaviour of porous media. To address these questions, we will present the development as well as the possibilities of ”Settle3D”. These include the generation of various 3D grainpacks, handling of input parameters (such as grain size distribution of different materials), sedimentary processes via direct collision procedures and an analysis of the final pore space geometry.
منابع مشابه
A Discrete Singular Convolution Method for the Seepage Analysis in Porous Media with Irregular Geometry
A novel discrete singular convolution (DSC) formulation is presented for the seepage analysis in irregular geometric porous media. The DSC is a new promising numerical approach which has been recently applied to solve several engineering problems. For a medium with regular geometry, realizing of the DSC for the seepage analysis is straight forward. But DSC implementation for a medium with ir...
متن کاملA Numerical Modeling for Natural Convection Heat Transfer in Porous Media With Generated Internal Heat Sources
In this paper a numerical method is used to study the unsteady state natural convection heat transfer within a confined porous media with uniform internal heat generation. The governing equations based on the Darcy model and Bossiness approximations are solved, using the finite difference Alternating Direction Implicit (ADI) method. The developed program was used to simulate natural convection ...
متن کاملExperimental Investigation of the Permeability and Inertial Effect on Fluid Flow through Homogeneous Porous Media
The value of the permeability in fluid flow through porous media is important for process investigation. In low Reynolds number, the classic Darcy’s law is suitable for simulation of fluid flow. In this paper, an experimental study for evaluation of preformed fiber permeability has been done. Also, the deviations from the classical Darcy law by experimental and numerical simulation of the N...
متن کاملAbsolute Permeability Calculation by Direct Numerical Simulation in Porous Media
Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...
متن کاملUsing Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel
A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 34 شماره
صفحات -
تاریخ انتشار 2008